

Overhead Power Line Design Software

Overhead power line design

ELECTRA is powerful overhead power line CAD design software which combines design and documentation production workflows for electrical distribution design.

It provides sophisticated design and analyzing tools to optimize transmission network designs in plan and profile. Detailed and comprehensive documentation production is supported within Electra software solution.

3D terrain model design

Electra support various digital terrain data from surveying instruments, Lidar technologies, photogrammetry and other data formats. Electra includes its own digital terrain creation tool to model 3D surfaces for generation of multiple plan and profile transmission lines design.

Easy to use workflows and dynamic data changes support

With its easy to use workflows and design data analysis tools Electra provides user a comprehensive tool to manage complex design requirements in most productive way. Automatic data update of plan and profile ena-

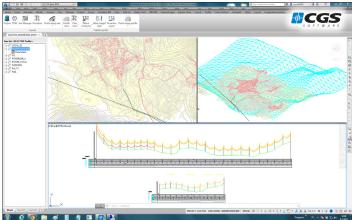
Used for Overhead power line design

Supported CAD AutoCAD, AutoCAD Civil 3D, AutoCAD Map 3D platforms 2021 to 2016; BricsCAD V21 to V18; 64-bit

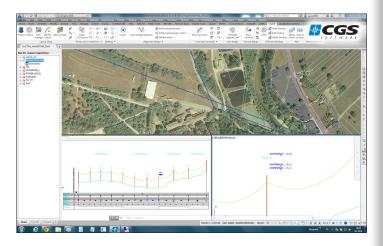
Supported English, Portuguese, Slovenian **languages**

Supported EN 50423-3-21 standards EN 50423-1

Product www.cgs-labs.com
Internet page



AUTODESK



ble users to easily design or edit transmission line geometry and components.

Industry standards and calculations

Electra includes build in cables library and load parameters which can be user defined and customized. Catenary calculations and sag-tension analysis tools enable users to design, edit and optimize transmission lines accordingly. Electra complies with EN 50423-3-21 and EN 50423-1 standards

Sag-tension and load parameters

Prebuild load parameters and sag-tension values enable users to produce quick designs while editing and customizing options provide reliable customer related or country specific transmission line designs.

Design data analysis

Electra provides safety distances analysis between transmission lines and terrain, enables display of various sag calculations under different temperature conditions and tensile forces. It also supports visual safety distances checks between conductors.

Infrastructure interoperability

Existing infrastructure analysis tools provide designers comprehensive information related to existing infrastructure that new design is related to. Other transmission lines intersection

heights, road, rail and other objects crossing information, projected objects from layout to profile information and more. Objects along transmission line data info and other information is available within Electra tools.

Design data reports and documentation

Span, sag and tension reports are included plus detailed plan and profile layout documentation with additional drafting, labeling and other possibilities are supported within the Electra solution.

PL2rep	ortele - No	toped					(m) (0) (m)
file fee	Format	Yew Help					
table m	200		: 00	ND.L			
	byu Abe						
				80.848 m 74.236 m			
		e ature temperatu					
Total c	attenary	in Plength	- 1	392.8			
Span			1003	e_1 - Pole_s			
				e_1 - Pole_s 72 m 06 daw/mm2 .204 daw 10 m			
						nt tensionmesultant tensio	n
- 30	0.565	00.071	7.636	837 670	7.467	830 038	
-15	0.617	99.072	6.936	767 433	7.054	769 397	
40	1.710	99.140	2.523	276,774	2.524	839, 938 760, 387 760, 387 761, 259 571, 292 518, 985 460, 934 460, 934 510, 221 227, 255 260, 221 270, 269	
-5	1.472	99, 579	8.000	877,600	8,006	878, 204	
Span			: Pol	e_4 - Pole_!			
Span Sag at max. tension Maximal sag			:1.0	55 m			
Temper	aturesa	Leng	th Ten	sion Tensi	ion Resulta	nt tensionmesultant tensio	n
- 30	0.405	43 646	7.634	437 665	7 444	844 473	
-15	0.442	43 647	7 001	767 666	7 054	773 956	
-10	0.484	83,648	6, 285	700, 484	6.433	705.665	
-5	0.533	83.650	5.798	636.018	5.839	640.574	
Ó	0.590	83.652	5.246	575.445	5.283	579.359	
. 5	0.653	83.654	4.735	519, 468	4.766	522.821	
10	0.724	83.657	4,274	468,805	4.300	471.656	
15	0.800	81.661	2.864	924.887	2.056	476. 298 386 612	
20	0.000	43.670	2 202	351 305	3. 317	252 010	
155	1 052	25 676	5 041	\$55.500	61555	254 044	
63	1.188	81,681	2.719	298, 296	2.710	289.528	
40	1.222	83,688	2.531	277,609	2.340	844.472 773.856 760.576 570.576 570.579 572.621 473.656 473.656 473.656 473.656 473.656 473.656 473.656 473.656 473.656 473.656 473.656 473.656	
-5	1.055	64,557	8,000	877,600	8.036	661.527	
Span Sag at Maximal	max. ter	nsfon	.0.5	e_S - Pole_6 22 m 98 m			
						nt tensionResultant tensio	

Electra Advantages

Intuitive workflow

The Electra workflow consistently follows standard civil engineering design process, which intuitively leads the designer from the start to the successful finish of the project.

Easy to learn and use

Well-structured ribbons, menus and simple dialogues enable fast learning for the first time user while the toolbox and command line options are provided for the convenience of experienced users.

Handling of large data sets

Electra is capable of handling large projects with very long power lines within seconds.

Support for local design standards

Electra is available in several languages and supports country specific standards and drawing layouts. Electra customers are entitled to use any country-specific version of the software in case of designing projects for foreign countries.

Team-work Support

Projects can be very efficiently divided among multiple team members who can then work simultaneously.

Native CAD application

Electra is fully integrated into the CAD environment. All the data are stored in one or more DWG files. The drawings can be modified with CAD commands at any design stage giving you complete flexibility in the design process.

CAD platform choice

Electra can be installed on top of AutoCAD, AutoCAD Civil 3D, AutoCAD Map 3D or BricsCAD, where the functionality always remains the same. In the future additional CAD platforms will be supported. This CAD platform choice gives Electra customers the possibility to optimize their "Cost of ownership" without sacrificing function abilities.

GIS data support

Integration with Autodesk MAP 3D functionality is supported within Electra in order to manage existing and new infrastructure spatial data. Export of new transmission lines data to shp files, ASCII files or other database formats is also supported.

Drafting

Electra provides all the drafting possibilities to deliver design data in various forms and plotting delivery requirements.

Flexibility

The program allows interactive modifications and changes of several parameters for calculating and editing of overhead power lines.

CAD platform support

Electra operates on the AutoCAD and AutoCAD Civil 3D platforms from 2021 to 2016 version. It also operates on BricsCAD V21 to V18 version.

Head Office Europe / Slovenia

CGS Labs d.o.o.

Brnčičeva ulica 13 SI-1000 Ljubljana, Slovenia

Internet: www.cgs-labs.com email: info@cgs-labs.com

